Перевод: со всех языков на английский

с английского на все языки

The Fundamental Ideas of Science Are Essentially Simple

  • 1 Science

       It is a common notion, or at least it is implied in many common modes of speech, that the thoughts, feelings, and actions of sentient beings are not a subject of science.... This notion seems to involve some confusion of ideas, which it is necessary to begin by clearing up. Any facts are fitted, in themselves, to be a subject of science, which follow one another according to constant laws; although those laws may not have been discovered, nor even to be discoverable by our existing resources. (Mill, 1900, B. VI, Chap. 3, Sec. 1)
       One class of natural philosophers has always a tendency to combine the phenomena and to discover their analogies; another class, on the contrary, employs all its efforts in showing the disparities of things. Both tendencies are necessary for the perfection of science, the one for its progress, the other for its correctness. The philosophers of the first of these classes are guided by the sense of unity throughout nature; the philosophers of the second have their minds more directed towards the certainty of our knowledge. The one are absorbed in search of principles, and neglect often the peculiarities, and not seldom the strictness of demonstration; the other consider the science only as the investigation of facts, but in their laudable zeal they often lose sight of the harmony of the whole, which is the character of truth. Those who look for the stamp of divinity on every thing around them, consider the opposite pursuits as ignoble and even as irreligious; while those who are engaged in the search after truth, look upon the other as unphilosophical enthusiasts, and perhaps as phantastical contemners of truth.... This conflict of opinions keeps science alive, and promotes it by an oscillatory progress. (Oersted, 1920, p. 352)
       Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone. (Einstein & Infeld, 1938, p. 27)
       A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it. (Planck, 1949, pp. 33-34)
       [Original quotation: "Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der Weise durchzusetzen, dass ihre Gegner ueberzeugt werden und sich as belehrt erklaeren, sondern vielmehr dadurch, dass die Gegner allmaehlich aussterben und dass die heranwachsende Generation von vornherein mit der Wahrheit vertraut gemacht ist." (Planck, 1990, p. 15)]
       I had always looked upon the search for the absolute as the noblest and most worth while task of science. (Planck, 1949, p. 46)
       If you cannot-in the long run-tell everyone what you have been doing, your doing has been worthless. (SchroЁdinger, 1951, pp. 7-8)
       Even for the physicist the description in plain language will be a criterion of the degree of understanding that has been reached. (Heisenberg, 1958, p. 168)
       The old scientific ideal of episteґmeґ-of absolutely certain, demonstrable knowledge-has proved to be an idol. The demand for scientific objectivity makes it inevitable that every scientific statement must remain tentative forever. It may indeed be corroborated, but every corroboration is relative to other statements which, again, are tentative. Only in our subjective experiences of conviction, in our subjective faith, can we be "absolutely certain." (Popper, 1959, p. 280)
       The layman, taught to revere scientists for their absolute respect for the observed facts, and for the judiciously detached and purely provisional manner in which they hold scientific theories (always ready to abandon a theory at the sight of any contradictory evidence) might well have thought that, at Miller's announcement of this overwhelming evidence of a "positive effect" [indicating that the speed of light is not independent from the motion of the observer, as Einstein's theory of relativity demands] in his presidential address to the American Physical Society on December 29th, 1925, his audience would have instantly abandoned the theory of relativity. Or, at the very least, that scientists-wont to look down from the pinnacle of their intellectual humility upon the rest of dogmatic mankind-might suspend judgment in this matter until Miller's results could be accounted for without impairing the theory of relativity. But no: by that time they had so well closed their minds to any suggestion which threatened the new rationality achieved by Einstein's world-picture, that it was almost impossible for them to think again in different terms. Little attention was paid to the experiments, the evidence being set aside in the hope that it would one day turn out to be wrong. (Polanyi, 1958, pp. 12-13)
       The practice of normal science depends on the ability, acquired from examplars, to group objects and situations into similarity sets which are primitive in the sense that the grouping is done without an answer to the question, "Similar with respect to what?" (Kuhn, 1970, p. 200)
       Science in general... does not consist in collecting what we already know and arranging it in this or that kind of pattern. It consists in fastening upon something we do not know, and trying to discover it. (Collingwood, 1972, p. 9)
       Scientific fields emerge as the concerns of scientists congeal around various phenomena. Sciences are not defined, they are recognized. (Newell, 1973a, p. 1)
       This is often the way it is in physics-our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. I do not think it is possible really to understand the successes of science without understanding how hard it is-how easy it is to be led astray, how difficult it is to know at any time what is the next thing to be done. (Weinberg, 1977, p. 49)
       Science is wonderful at destroying metaphysical answers, but incapable of providing substitute ones. Science takes away foundations without providing a replacement. Whether we want to be there or not, science has put us in a position of having to live without foundations. It was shocking when Nietzsche said this, but today it is commonplace; our historical position-and no end to it is in sight-is that of having to philosophize without "foundations." (Putnam, 1987, p. 29)

    Historical dictionary of quotations in cognitive science > Science

  • 2 Knowledge

       It is indeed an opinion strangely prevailing amongst men, that houses, mountains, rivers, and, in a word, all sensible objects, have an existence, natural or real, distinct from their being perceived by the understanding. But, with how great an assurance and acquiescence soever this principle may be entertained in the world, yet whoever shall find in his heart to call it into question may, if I mistake not, perceive it to involve a manifest contradiction. For, what are the forementioned objects but things we perceive by sense? and what do we perceive besides our own ideas or sensations? and is it not plainly repugnant that any one of these, or any combination of them, should exist unperceived? (Berkeley, 1996, Pt. I, No. 4, p. 25)
       It seems to me that the only objects of the abstract sciences or of demonstration are quantity and number, and that all attempts to extend this more perfect species of knowledge beyond these bounds are mere sophistry and illusion. As the component parts of quantity and number are entirely similar, their relations become intricate and involved; and nothing can be more curious, as well as useful, than to trace, by a variety of mediums, their equality or inequality, through their different appearances.
       But as all other ideas are clearly distinct and different from each other, we can never advance farther, by our utmost scrutiny, than to observe this diversity, and, by an obvious reflection, pronounce one thing not to be another. Or if there be any difficulty in these decisions, it proceeds entirely from the undeterminate meaning of words, which is corrected by juster definitions. That the square of the hypotenuse is equal to the squares of the other two sides cannot be known, let the terms be ever so exactly defined, without a train of reasoning and enquiry. But to convince us of this proposition, that where there is no property, there can be no injustice, it is only necessary to define the terms, and explain injustice to be a violation of property. This proposition is, indeed, nothing but a more imperfect definition. It is the same case with all those pretended syllogistical reasonings, which may be found in every other branch of learning, except the sciences of quantity and number; and these may safely, I think, be pronounced the only proper objects of knowledge and demonstration. (Hume, 1975, Sec. 12, Pt. 3, pp. 163-165)
       Our knowledge springs from two fundamental sources of the mind; the first is the capacity of receiving representations (the ability to receive impressions), the second is the power to know an object through these representations (spontaneity in the production of concepts).
       Through the first, an object is given to us; through the second, the object is thought in relation to that representation.... Intuition and concepts constitute, therefore, the elements of all our knowledge, so that neither concepts without intuition in some way corresponding to them, nor intuition without concepts, can yield knowledge. Both may be either pure or empirical.... Pure intuitions or pure concepts are possible only a priori; empirical intuitions and empirical concepts only a posteriori. If the receptivity of our mind, its power of receiving representations in so far as it is in any way affected, is to be called "sensibility," then the mind's power of producing representations from itself, the spontaneity of knowledge, should be called "understanding." Our nature is so constituted that our intuitions can never be other than sensible; that is, it contains only the mode in which we are affected by objects. The faculty, on the other hand, which enables us to think the object of sensible intuition is the understanding.... Without sensibility, no object would be given to us; without understanding, no object would be thought. Thoughts without content are empty; intuitions without concepts are blind. It is therefore just as necessary to make our concepts sensible, that is, to add the object to them in intuition, as to make our intuitions intelligible, that is to bring them under concepts. These two powers or capacities cannot exchange their functions. The understanding can intuit nothing, the senses can think nothing. Only through their union can knowledge arise. (Kant, 1933, Sec. 1, Pt. 2, B74-75 [p. 92])
       Metaphysics, as a natural disposition of Reason is real, but it is also, in itself, dialectical and deceptive.... Hence to attempt to draw our principles from it, and in their employment to follow this natural but none the less fallacious illusion can never produce science, but only an empty dialectical art, in which one school may indeed outdo the other, but none can ever attain a justifiable and lasting success. In order that, as a science, it may lay claim not merely to deceptive persuasion, but to insight and conviction, a Critique of Reason must exhibit in a complete system the whole stock of conceptions a priori, arranged according to their different sources-the Sensibility, the understanding, and the Reason; it must present a complete table of these conceptions, together with their analysis and all that can be deduced from them, but more especially the possibility of synthetic knowledge a priori by means of their deduction, the principles of its use, and finally, its boundaries....
       This much is certain: he who has once tried criticism will be sickened for ever of all the dogmatic trash he was compelled to content himself with before, because his Reason, requiring something, could find nothing better for its occupation. Criticism stands to the ordinary school metaphysics exactly in the same relation as chemistry to alchemy, or as astron omy to fortune-telling astrology. I guarantee that no one who has comprehended and thought out the conclusions of criticism, even in these Prolegomena, will ever return to the old sophistical pseudo-science. He will rather look forward with a kind of pleasure to a metaphysics, certainly now within his power, which requires no more preparatory discoveries, and which alone can procure for reason permanent satisfaction. (Kant, 1891, pp. 115-116)
       Knowledge is only real and can only be set forth fully in the form of science, in the form of system. Further, a so-called fundamental proposition or first principle of philosophy, even if it is true, it is yet none the less false, just because and in so far as it is merely a fundamental proposition, merely a first principle. It is for that reason easily refuted. The refutation consists in bringing out its defective character; and it is defective because it is merely the universal, merely a principle, the beginning. If the refutation is complete and thorough, it is derived and developed from the nature of the principle itself, and not accomplished by bringing in from elsewhere other counter-assurances and chance fancies. It would be strictly the development of the principle, and thus the completion of its deficiency, were it not that it misunderstands its own purport by taking account solely of the negative aspect of what it seeks to do, and is not conscious of the positive character of its process and result. The really positive working out of the beginning is at the same time just as much the very reverse: it is a negative attitude towards the principle we start from. Negative, that is to say, in its one-sided form, which consists in being primarily immediate, a mere purpose. It may therefore be regarded as a refutation of what constitutes the basis of the system; but more correctly it should be looked at as a demonstration that the basis or principle of the system is in point of fact merely its beginning. (Hegel, 1910, pp. 21-22)
       Knowledge, action, and evaluation are essentially connected. The primary and pervasive significance of knowledge lies in its guidance of action: knowing is for the sake of doing. And action, obviously, is rooted in evaluation. For a being which did not assign comparative values, deliberate action would be pointless; and for one which did not know, it would be impossible. Conversely, only an active being could have knowledge, and only such a being could assign values to anything beyond his own feelings. A creature which did not enter into the process of reality to alter in some part the future content of it, could apprehend a world only in the sense of intuitive or esthetic contemplation; and such contemplation would not possess the significance of knowledge but only that of enjoying and suffering. (Lewis, 1946, p. 1)
       "Evolutionary epistemology" is a branch of scholarship that applies the evolutionary perspective to an understanding of how knowledge develops. Knowledge always involves getting information. The most primitive way of acquiring it is through the sense of touch: amoebas and other simple organisms know what happens around them only if they can feel it with their "skins." The knowledge such an organism can have is strictly about what is in its immediate vicinity. After a huge jump in evolution, organisms learned to find out what was going on at a distance from them, without having to actually feel the environment. This jump involved the development of sense organs for processing information that was farther away. For a long time, the most important sources of knowledge were the nose, the eyes, and the ears. The next big advance occurred when organisms developed memory. Now information no longer needed to be present at all, and the animal could recall events and outcomes that happened in the past. Each one of these steps in the evolution of knowledge added important survival advantages to the species that was equipped to use it.
       Then, with the appearance in evolution of humans, an entirely new way of acquiring information developed. Up to this point, the processing of information was entirely intrasomatic.... But when speech appeared (and even more powerfully with the invention of writing), information processing became extrasomatic. After that point knowledge did not have to be stored in the genes, or in the memory traces of the brain; it could be passed on from one person to another through words, or it could be written down and stored on a permanent substance like stone, paper, or silicon chips-in any case, outside the fragile and impermanent nervous system. (Csikszentmihalyi, 1993, pp. 56-57)

    Historical dictionary of quotations in cognitive science > Knowledge

См. также в других словарях:

  • The Vatican —     The Vatican     † Catholic Encyclopedia ► The Vatican     This subject will be treated under the following heads:     I. Introduction; II. Architectural History of the Vatican Palace; III. Description of the Palace; IV. Description of the… …   Catholic encyclopedia

  • Science and British philosophy: Boyle and Newton — G.A.J.Rogers INTRODUCTION Achievements in the natural sciences in the period from Nicholas Copernicus (1473– 1543) to the death of Isaac Newton (1642–1727) changed our whole understanding of the nature of the universe and of the ways in which we… …   History of philosophy

  • The Real Presence of Christ in the Eucharist —     The Real Presence of Christ in the Eucharist     † Catholic Encyclopedia ► The Real Presence of Christ in the Eucharist     In this article we shall consider:     ♦ the fact of the Real Presence, which is, indeed, the central dogma;     ♦ the …   Catholic encyclopedia

  • The Grammar of Science — is a book by Karl Pearson first published at London by Walter Scott in 1892. It was recommended by Einstein to his friends of the Olympia Academy. Several themes were covered in this book that later became part of the theories of Einstein and… …   Wikipedia

  • science, history of — Introduction       the history of science from its beginnings in prehistoric times to the 20th century.       On the simplest level, science is knowledge of the world of nature. There are many regularities in nature that mankind has had to… …   Universalium

  • Science — This article is about the general term, particularly as it refers to experimental sciences. For the specific topics of study by scientists, see Natural science. For other uses, see Science (disambiguation) …   Wikipedia

  • Science (Philosophies of) — Philosophies of science Mach, Duhem, Bachelard Babette E.Babich THE TRADITION OF CONTINENTAL PHILOSOPHY OF SCIENCE If the philosophy of science is not typically represented as a ‘continental’ discipline it is nevertheless historically rooted in… …   History of philosophy

  • Essentially contested concept — In a paper delivered to the Aristotelian Society on 12 March 1956, [Published immediately as Gallie (1956a); a later, slightly altered version appears in Gallie (1964).] Walter Bryce Gallie (1912 ndash;1998) introduced the term essentially… …   Wikipedia

  • The Dark Energy Survey — DES logo The Dark Energy Survey (DES) is a survey that aims to probe the dynamics of the expansion of the universe and the growth of large scale structure. The collaboration is composed of research institutes and universities from United… …   Wikipedia

  • social science — social scientist. 1. the study of society and social behavior. 2. a science or field of study, as history, economics, etc., dealing with an aspect of society or forms of social activity. [1775 85] * * * Any discipline or branch of science that… …   Universalium

  • Philosophy of science — is the study of assumptions, foundations, and implications of science. The field is defined by an interest in one of a set of traditional problems or an interest in central or foundational concerns in science. In addition to these central… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»